Information Extraction (IE) aims to extract structured information from heterogeneous sources. IE from natural language texts include sub-tasks such as Named Entity Recognition (NER), Relation Extraction (RE), and Event Extraction (EE). Most IE systems require comprehensive understandings of sentence structure, implied semantics, and domain knowledge to perform well; thus, IE tasks always need adequate external resources and annotations. However, it takes time and effort to obtain more human annotations. Low-Resource Information Extraction (LRIE) strives to use unsupervised data, reducing the required resources and human annotation. In practice, existing systems either utilize self-training schemes to generate pseudo labels that will cause the gradual drift problem, or leverage consistency regularization methods which inevitably possess confirmation bias. To alleviate confirmation bias due to the lack of feedback loops in existing LRIE learning paradigms, we develop a Gradient Imitation Reinforcement Learning (GIRL) method to encourage pseudo-labeled data to imitate the gradient descent direction on labeled data, which can force pseudo-labeled data to achieve better optimization capabilities similar to labeled data. Based on how well the pseudo-labeled data imitates the instructive gradient descent direction obtained from labeled data, we design a reward to quantify the imitation process and bootstrap the optimization capability of pseudo-labeled data through trial and error. In addition to learning paradigms, GIRL is not limited to specific sub-tasks, and we leverage GIRL to solve all IE sub-tasks (named entity recognition, relation extraction, and event extraction) in low-resource settings (semi-supervised IE and few-shot IE).
translated by 谷歌翻译
场景图是一种语义表示,表达场景中对象之间的对象,属性和关系。场景图在许多交叉模态任务中起着重要作用,因为它们能够捕获图像和文本之间的交互。在本文中,我们关注场景图修改(SGM),其中需要系统来学习如何基于自然语言查询更新现有场景图。与以前重建整个场景图的方法不同,我们通过引入增量结构扩展(ISE)来将SGM作为图形扩展任务。 ISE通过逐步扩展源图来构建目标图,而无需更改未修改的结构。基于ISE,我们进一步提出了一个模型,该模型在节点预测和边缘预测之间进行迭代,从而逐渐推断出更准确和和谐的扩展决策。此外,我们构建了一个具有挑战性的数据集,该数据集包含比现有数据集更复杂的查询和更大的场景图。四个基准测试的实验证明了我们的方法的有效性,该实验超过了以前的最新模型。
translated by 谷歌翻译
对新数据库的普遍性对于旨在将人类话语解析为SQL语句的文本到SQL系统至关重要。现有作品通过利用确切的匹配方法来确定问题单词和模式项目之间的词汇匹配来实现这一目标。但是,这些方法在其他具有挑战性的场景中失败,例如,表面形式在相应的问题单词和架构项目之间有所不同的同义词替代。在本文中,我们提出了一个名为ISESL-SQL的框架,以迭代地构建问题令牌和数据库模式之间的语义增强的架构链接图。首先,我们以无监督的方式通过探测过程提取PLM的模式链接图。然后,通过深图学习方法在训练过程中进一步优化了模式链接图。同时,我们还设计了一个称为图形正则化的辅助任务,以改善模式链接图中提到的模式信息。对三个基准测试的广泛实验表明,ISESL-SQL可以始终优于基准,进一步的研究表明其普遍性和鲁棒性。
translated by 谷歌翻译
对事件序列的预测对于信息检索和自然语言处理中的许多现实世界应用至关重要。在事件序列预测中,未来的活动生成(FEG)是一项具有挑战性的任务,因为它不仅需要流利的文本生成,而且需要常识性推理才能保持整个事件故事的逻辑连贯性。在本文中,我们提出了一个新颖的可解释的FEG框架COEP。它突出并整合了两种类型的事件知识,对直接事件事件关系的顺序知识以及推论知识,这些知识反映了事件之间的中间角色心理学(例如意图,原因,反应),这些心理本质地将故事推向了故事。为了减轻知识遗忘问题,我们为每种类型的知识设计了两个模块,即IM和GM,它们是通过及时调整组合的。首先,IM专注于理解推论知识,以产生常识性解释并为通用汽车提供软提示向量。我们还设计了一种对比歧视器,以提高概括能力。其次,GM通过用IM的指导对直接顺序知识进行建模来生成未来事件。自动和人类评估表明,我们的方法可以产生更连贯,具体和逻辑的未来事件。
translated by 谷歌翻译
自然语言视频本地化(NLVL)是视觉语言理解区域的重要任务,该方面还要求深入了解单独的计算机视觉和自然语言侧,但更重要的是两侧之间的相互作用。对抗性脆弱性得到了很好的认可,作为深度神经网络模型的关键安全问题,需要谨慎调查。尽管在视频和语言任务中进行了广泛但分开的研究,但目前对NLVL等愿景联合任务的对抗鲁棒性的理解较少。因此,本文旨在通过检查攻击和防御方面的三个脆弱性,全面调查NLVL模型的对抗性鲁棒性。为了实现攻击目标,我们提出了一种新的对抗攻击范式,称为同义句子感知对抗对抗攻击对逆向(潜行),这捕获了视觉和语言侧面之间的跨模式相互作用。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译
In this paper, we investigate the joint device activity and data detection in massive machine-type communications (mMTC) with a one-phase non-coherent scheme, where data bits are embedded in the pilot sequences and the base station simultaneously detects active devices and their embedded data bits without explicit channel estimation. Due to the correlated sparsity pattern introduced by the non-coherent transmission scheme, the traditional approximate message passing (AMP) algorithm cannot achieve satisfactory performance. Therefore, we propose a deep learning (DL) modified AMP network (DL-mAMPnet) that enhances the detection performance by effectively exploiting the pilot activity correlation. The DL-mAMPnet is constructed by unfolding the AMP algorithm into a feedforward neural network, which combines the principled mathematical model of the AMP algorithm with the powerful learning capability, thereby benefiting from the advantages of both techniques. Trainable parameters are introduced in the DL-mAMPnet to approximate the correlated sparsity pattern and the large-scale fading coefficient. Moreover, a refinement module is designed to further advance the performance by utilizing the spatial feature caused by the correlated sparsity pattern. Simulation results demonstrate that the proposed DL-mAMPnet can significantly outperform traditional algorithms in terms of the symbol error rate performance.
translated by 谷歌翻译
Domain adaptation methods reduce domain shift typically by learning domain-invariant features. Most existing methods are built on distribution matching, e.g., adversarial domain adaptation, which tends to corrupt feature discriminability. In this paper, we propose Discriminative Radial Domain Adaptation (DRDR) which bridges source and target domains via a shared radial structure. It's motivated by the observation that as the model is trained to be progressively discriminative, features of different categories expand outwards in different directions, forming a radial structure. We show that transferring such an inherently discriminative structure would enable to enhance feature transferability and discriminability simultaneously. Specifically, we represent each domain with a global anchor and each category a local anchor to form a radial structure and reduce domain shift via structure matching. It consists of two parts, namely isometric transformation to align the structure globally and local refinement to match each category. To enhance the discriminability of the structure, we further encourage samples to cluster close to the corresponding local anchors based on optimal-transport assignment. Extensively experimenting on multiple benchmarks, our method is shown to consistently outperforms state-of-the-art approaches on varied tasks, including the typical unsupervised domain adaptation, multi-source domain adaptation, domain-agnostic learning, and domain generalization.
translated by 谷歌翻译